By Topic

Second-Order Multidimensional ICA: Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lahat, D. ; Sch. of Electr. Eng., Tel Aviv Univ., Tel Aviv, Israel ; Cardoso, J. ; Messer, H.

Independent component analysis (ICA) and blind source separation (BSS) deal with extracting a number of mutually independent elements from a set of observed linear mixtures. Motivated by various applications, this paper considers a more general and more flexible model: the sources can be partitioned into groups exhibiting dependence within a given group but independence between two different groups. We argue that this is tantamount to considering multidimensional components as opposed to the standard ICA case which is restricted to one-dimensional components. The core of the paper is devoted to the statistical analysis of the blind separation of multidimensional components based on second-order statistics, in a piecewise-stationary model. We develop the likelihood and the associated estimating equations for the Gaussian case. We obtain closed-form expressions for the Fisher information matrix and the Cramér-Rao bound of the de-mixing parameters, as well as the mean-square error (MSE) of the component estimates. The derived MSE is valid also for non-Gaussian data. Our analysis is verified through numerical experiments, and its performance is compared to classical ICA in various dependence scenarios, quantifying the gain in the accuracy of component recovery in presence of multidimensional components.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 9 )