By Topic

A method for sorting out the spam from Chinese product reviews

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lijia Liu ; Coll. of Math. & Comput. Sci., Hebei Univ., Baoding, China ; Yu Wang

This paper conducts a research on the spam detection in the field of Chinese product reviews. As to useless reviews, the paper uses four important classification features based on questions, hyperlinks and so on to characterize reviews, and then adopts the classification method based on the Logistic regression to detect the useless reviews. As to those untruthful reviews, firstly 2-gram model is proposed to characterize reviews with the consideration of the word order, then the Katz smoothing method is adopted to smooth the model, and lastly the KL divergence is added to detect the untruthful reviews. The experiments have illustrated that those methods put forward in this paper can effectively detect the spam in the field of Chinese product reviews.

Published in:

Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on

Date of Conference:

21-23 April 2012