By Topic

Qualitative Reasoning for Biological Network Inference from Systematic Perturbation Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Silvana Badaloni ; University of Padova, Padova ; Barbara Di Camillo ; Francesco Sambo

The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:9 ,  Issue: 5 )