By Topic

An Information-Theoretic Characterization of Channels That Die

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Varshney, L.R. ; IBM Thomas J. Watson Research Center, Hawthorne, NY, USA ; Mitter, S.K. ; Goyal, V.K.

Given the possibility of communication systems failing catastrophically, we investigate limits to communicating over channels that fail at random times. These channels are finite-state semi-Markov channels. We show that communication with arbitrarily small probability of error is not possible. Making use of results in finite blocklength channel coding, we determine sequences of blocklengths that optimize transmission volume communicated at fixed maximum message error probabilities. We provide a partial ordering of communication channels. A dynamic programming formulation is used to show the structural result that channel state feedback does not improve performance.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 9 )