By Topic

Wireless NoC as Interconnection Backbone for Multicore Chips: Promises and Challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sujay Deb ; Washington State University, Pullman, WA, USA ; Amlan Ganguly ; Partha Pratim Pande ; Benjamin Belzer
more authors

Current commercial systems-on-chips (SoCs) designs integrate an increasingly large number of predesigned cores and their number is predicted to increase significantly in the near future. For example, molecular-scale computing promises single or even multiple order-of-magnitude improvements in device densities. The network-on-chip (NoC) is an enabling technology for integration of large numbers of embedded cores on a single die. The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency and significant power consumption arising out of long multi-hop links used in data exchange. The latency, power consumption and interconnect routing problems of conventional NoCs can be addressed by replacing or augmenting multi-hop wired paths with high-bandwidth single-hop long-range wireless links. This opens up new opportunities for detailed investigations into the design of wireless NoCs (WiNoCs) with on-chip antennas, suitable transceivers and routers. Moreover, as it is an emerging technology, the on-chip wireless links also need to overcome significant challenges pertaining to reliable integration. In this paper, we present various challenges and emerging solutions regarding the design of an efficient and reliable WiNoC architecture.

Published in:

IEEE Journal on Emerging and Selected Topics in Circuits and Systems  (Volume:2 ,  Issue: 2 )