By Topic

Autotuning Skeleton-Driven Optimizations for Transactional Worklist Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Góes, L.F.W. ; Pontificia Univ. Catolica de Minas Gerais, Belo Horizonte, Brazil ; Ioannou, N. ; Xekalakis, P. ; Cole, M.
more authors

Skeleton or pattern-based programming allows parallel programs to be expressed as specialized instances of generic communication and computation patterns. In addition to simplifying the programming task, such well structured programs are also amenable to performance optimizations during code generation and also at runtime. In this paper, we present a new skeleton framework that transparently selects and applies performance optimizations in transactional worklist applications. Using a novel hierarchical autotuning mechanism, it dynamically selects the most suitable set of optimizations for each application and adjusts them accordingly. Our experimental results on the STAMP benchmark suite show that our skeleton autotuning framework can achieve performance improvements of up to 88 percent, with an average of 46 percent, over a baseline version for a 16-core system and up to 115 percent, with an average of 56 percent, for a 32-core system. These performance improvements match or even exceed those obtained by a static exhaustive search of the optimization space.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 12 )