By Topic

Feature ranking for pattern recognition: A comparison of filter methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Test, E. ; Virginia Commonwealth Univ., Richmond, VA, USA ; Kecman, V. ; Strack, R. ; Qi Li
more authors

This paper presents an approach for comparing various feature ranking (FR) methods. First, six classification benchmarks are created using Exhaustive Search (ES) to select the best feature subsets. The subset selections have been done within double (nested) cross-validation procedures guaranteeing realistic accuracy predictions to unseen examples. Next, seven filter FR approaches are compared and ranked in respect to the top five best feature subsets for each data set. This paper also introduces a method for quantifying and comparing FR results. The results hint that using Gini index or scatter ratios leads to rankings closest to ES on average.

Published in:

Southeastcon, 2012 Proceedings of IEEE

Date of Conference:

15-18 March 2012