By Topic

A Robust Approach for Local Interest Point Detection in Line-Drawing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we propose a new method to detect local interest points as junctions in line-drawing images. Our approach takes advantages of different aspects. Firstly, we extract skeleton of image and then construct a Skeleton Connective Graph with the expectation that it provides a first level of junction detection from shapes. Secondly, instead of employing low-level operators to detect junctions as described in many traditional techniques, our method works at path level taking different skeleton branches into account to gain robustness. Thirdly, we exploit the benefits of wavelet transform (e.g. multi-resolution analysis, discontinuity detection, fast computation, less sensitive to noises) to efficiently detect the dominant points from 1D representations of the paths. Finally, a post-process of pruning and connecting the skeleton segments is performed to discard false detected points and to refine the skeleton. We present in experiments interesting results compared to different methods.

Published in:

Document Analysis Systems (DAS), 2012 10th IAPR International Workshop on

Date of Conference:

27-29 March 2012