By Topic

Discriminative Gabor Feature Selection for Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Linlin Shen ; Sch. of Comput. Sci. & Software Eng., Shenzhen Univ., Shenzhen, China ; Zexuan Zhu ; Sen Jia ; Jiasong Zhu
more authors

Three-dimensional Gabor wavelets have recently been successfully applied for hyperspectral image classification due to their ability to extract joint spatial and spectrum information. However, the dimension of the extracted Gabor feature is incredibly huge. In this letter, we propose a symmetrical-uncertainty-based and Markov-blanket-based approach to select informative and nonredundant Gabor features for hyperspectral image classification. The extracted Gabor features with large dimension are first ranked by their information contained for classification and then added one by one after investigating the redundancy with already selected features. The proposed approach was fully tested on the widely used Indian Pine site data. The results show that the selected features are much more efficient and can achieve similar performance with previous approach using only hundreds of features.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 1 )