By Topic

A Novel Process to Produce Amorphous Nanosized Boron Useful for \hbox {MgB}_{2} Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, we report a new synthesis route to produce boron powders characterized as being amorphous and having very fine particle size. This route has been developed to improve the performances of superconducting MgB2 powders, which can be directly synthesized from this nanostructured boron precursor by following the ex-situ or the in-situ PIT method during manufacturing of tapes, wires, and cables. All the procedure steps are explained, and the chemical-physical characterization of the boron powder, using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques, is reported. Furthermore, a comparison with commercial boron is given. Preliminary results of the magnetic and electrical characterization, such as critical temperature TC and transport critical current density JC t, for the MgB2 tape are reported and compared with those for the tape prepared with commercial boron.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:22 ,  Issue: 4 )