Cart (Loading....) | Create Account
Close category search window
 

Optimal Pivot Selection in Fast Weighted Median Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rauh, A. ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE, USA ; Arce, G.R.

Weighted median filters are increasingly being used in signal processing applications and thus fast implementations are of importance. This paper introduces a fast algorithm to compute the weighted median (WM) of N samples which has linear time and space complexity as opposed to O(N log N) which is the time complexity of traditional sorting algorithms. A popular selection algorithm often used to find the WM in large data sets is Quickselect whose performance is highly dependent on how the pivots are chosen. We introduce an optimization based pivot selection strategy which results in significantly improved performance as well as a more consistent runtime compared to traditional approaches. The selected pivots are order statistics of subsets. In order to find the optimal order statistics as well as the optimal subset sizes, a set of cost functions are derived, which when minimized lead to optimal design parameters. We compare the complexity to Floyd and Rivest's algorithm SELECT which to date has been the fastest median finding algorithm and we show that the proposed algorithm compared with SELECT requires close to 30% fewer comparisons. It is also shown that the proposed selection algorithm is asymptotically optimal for large N.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.