By Topic

Human Activity as a Manifold-Valued Random Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sheng Yi ; GE Global Research, Niskayuna, NY, USA ; Hamid Krim ; Larry K. Norris

Most of the previous shape-based human activity models are built with either a linear assumption or an extrinsic interpretation of the nonlinear geometry of the shape space, both of which proved to be problematic on account of the nonlinear intrinsic geometry of the associated shape spaces. In this paper, we propose an intrinsic stochastic modeling of human activity on a shape manifold. More importantly, within an elegant and theoretically sound framework, our work effectively bridges the nonlinear modeling of human activity on a nonlinear space, with the classic stochastic modeling in a Euclidean space, and thereby provides a foundation for a more effective and accurate analysis of the nonlinear feature space of activity models. From a video sequence, human activity is extracted as a sequence of shapes. Such a sequence is considered as one realization of a random process on a shape manifold. Different activities are then modeled as manifold valued random processes with different distributions. To address the problem of stochastic modeling on a manifold, we first construct a nonlinear invertible map of a manifold valued process to a Euclidean process. The resulting process is then modeled as a global or piecewise Brownian motion. The mapping from a manifold to a Euclidean space is known as a stochastic development. The advantage of such a technique is that it yields a one-one correspondence, and the resulting Euclidean process intrinsically captures the curvature on the original manifold. The proposed algorithm is validated on two activity databases and compared with the related works on each of these. The substantiating results demonstrate the viability and high-accuracy of our modeling technique in characterizing and classifying different activities.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 8 )