By Topic

Fourier Transform-Based Scalable Image Quality Measure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Manish Narwaria ; School of Computer Engineering, Nanyang Technological University, Singapore ; Weisi Lin ; Ian Vince McLoughlin ; Sabu Emmanuel
more authors

We present a new image quality assessment algorithm based on the phase and magnitude of the 2-D discrete Fourier transform. The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the human visual system's sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of non-uniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Last, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is, therefore, further scalable for RR scenarios. We report extensive experimental results using a total of nine publicly available databases: seven image (with a total of 3832 distorted images with diverse distortions) and two video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing full-reference algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 8 )