Cart (Loading....) | Create Account
Close category search window
 

Multiview Partitioning via Tensor Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinhai Liu ; Credit Reference Center & Financial Res. Inst., People's Bank of China, Beijing, China ; Shuiwang Ji ; Gla╠łnzel, W. ; De Moor, B.

Clustering by integrating multiview representations has become a crucial issue for knowledge discovery in heterogeneous environments. However, most prior approaches assume that the multiple representations share the same dimension, limiting their applicability to homogeneous environments. In this paper, we present a novel tensor-based framework for integrating heterogeneous multiview data in the context of spectral clustering. Our framework includes two novel formulations; that is multiview clustering based on the integration of the Frobenius-norm objective function (MC-FR-OI) and that based on matrix integration in the Frobenius-norm objective function (MC-FR-MI). We show that the solutions for both formulations can be computed by tensor decompositions. We evaluated our methods on synthetic data and two real-world data sets in comparison with baseline methods. Experimental results demonstrate that the proposed formulations are effective in integrating multiview data in heterogeneous environments.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 5 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.