By Topic

VMP: A MAC Protocol for EPON-Based Video-Dominated FiWi Access Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghazisaidi, N. ; Ericsson Inc., San Jose, CA, USA ; Maier, M. ; Reisslein, M.

Optical and wireless network technologies are expected to converge in the near to midterm, giving rise to bimodal fiber-wireless (FiWi) broadband access networks. In triple-play (voice, video, and data) service scenarios for such FiWi access networks, video traffic will likely dominate due to the widely predicted increase in video network services and the high traffic volume of compressed video compared to voice and data services. In this paper, we introduce and evaluate a comprehensive video MAC protocol (VMP) to efficiently deliver prerecorded video downstream to wireless consumers over a FiWi network in the presence of voice and data upstream and downstream traffic. VMP consists of three main novel components: (i) frame fragmentation in conjunction with hierarchical frame aggregation for efficient MAC frame transport over the integrated optical and wireless network segments, (ii) multi-polling medium access control for upstream voice and data packets and acknowledgements for downstream video packets, and (iii) prefetching of video frames over the optical and wireless network segments in conjunction with hybrid reservation/contention-based medium access. Our simulation results indicate that VMP achieves significant improvements in throughput-delay performance for all three traffic types as well as reductions in the playback starvation probability for video traffic compared to existing state-of-the-art MAC mechanisms.

Published in:

Broadcasting, IEEE Transactions on  (Volume:58 ,  Issue: 3 )