By Topic

Evaluation of Slot-Embedded Partial Electrostatic Shield for High-Frequency Bearing Current Mitigation in Inverter-Fed Induction Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ferreira, F.J.T.E. ; Dept. of Electr. Eng., Polytech. Inst. of Coimbra (IPC/ISEC), Coimbra, Portugal ; Cistelecan, M.V. ; de Almeida, A.T.

In the last decade, the use of PWM voltage-source inverters to control three-phase squirrel-cage induction motors has increased significantly. Consequently, high-frequency current activity in the bearings of inverter-fed motors and/or of devices mechanically coupled to their shaft is presently a common issue, ultimately shortening the bearings lifetime. In fact, bearing failures occurrence in inverter-fed motors increased dramatically in the last few years. Recently, the effectiveness of insulation-based bearing current mitigation techniques (e.g., bearings with insulated rings or ceramic spheres) and/or motor shaft grounding with an electric contact brush has been fairly investigated. However, there are some alternative high-frequency common-mode bearing current mitigation techniques requiring further investigation. In this paper, a stator slot-embedded partial electrostatic shield to reduce the capacitive coupling between the stator windings and the rotor in inverter-fed motors is proposed, analyzed, and implemented, being experimentally demonstrated its practicability and effectiveness in attenuating the common-mode voltage between the rotor shaft and the frame/ground, contributing to the reduction of high-frequency common-mode bearing current activity.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 2 )