Cart (Loading....) | Create Account
Close category search window

Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tehrani, A.F. ; Dept. of Math. & Comput. Sci., Univ. of Marburg, Marburg, Germany ; Weiwei Cheng ; Hullermeier, E.

We propose a novel method for preference learning or, more specifically, learning to rank, where the task is to learn a ranking model that takes a subset of alternatives as input and produces a ranking of these alternatives as output. Just like in the case of conventional classifier learning, training information is provided in the form of a set of labeled instances, with labels or, say, preference degrees taken from an ordered categorical scale. This setting is known as multipartite ranking in the literature. Our approach is based on the idea of using the (discrete) Choquet integral as an underlying model for representing ranking functions. Being an established aggregation function in fields such as multiple criteria decision making and information fusion, the Choquet integral offers a number of interesting properties that make it attractive from a machine learning perspective, too. The learning problem itself comes down to properly specifying the fuzzy measure on which the Choquet integral is defined. This problem is formalized as a margin maximization problem and solved by means of a cutting plane algorithm. The performance of our method is tested on a number of benchmark datasets.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:20 ,  Issue: 6 )

Date of Publication:

Dec. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.