By Topic

Maximum a Posteriori Binary Mask Estimation for Underdetermined Source Separation Using Smoothed Posteriors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cobos, M. ; Comput. Sci. Dept., Univ. de Valencia, Valencia, Spain ; Lopez, Jose J.

Sound source separation has become a topic of intensive research in the last years. The research effort has been specially relevant for the underdetermined case, where a considerable number of sparse methods working in the time-frequency (T-F) domain have appeared. In this context, although binary masking seems to be a preferred choice for source demixing, the estimated masks differ substantially from the ideal ones. This paper proposes a maximum a posteriori (MAP) framework for binary mask estimation. To this end, class-conditional source probabilities according to the observed mixing parameters are modeled via ratios of dependent Cauchy distributions while source priors are iteratively calculated from the observed histograms. Moreover, spatially smoothed posteriors in the T-F domain are proposed to avoid noisy estimates, showing that the estimated masks are closer to the ideal ones in terms of objective performance measures.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )