By Topic

Automatic Detection of Rivers in High-Resolution SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Klemenjak, S. ; Center for Remote Sensing of Land Surfaces, Univ. of Bonn, Bonn, Germany ; Waske, B. ; Valero, S. ; Chanussot, J.

Remote sensing plays a major role in supporting decision-making and surveying compliance of several multilateral environmental treaties. In this paper, we present an approach for supporting monitoring compliance of river networks in context of the European Water Framework Directive. Only a few approaches have been developed for extracting river networks from satellite data and usually they require manual input, which seems not feasible for automatic and operational application. We propose a method for the automatic extraction of river structures in TerraSAR-X data. The method is based on mathematical morphology and supervised image classification, using automatically selected training samples. The method is applied on TerraSAR-X images from two different study sites. In addition, the results are compared to an alternative method, which requires manual user interaction. The detailed accuracy assessment shows that the proposed method achieves accurate results (Kappa ~ 0.7) and performs almost similar in terms of accuracy, when compared to the alternative approach. Moreover, the proposed method can be applied on various datasets (e.g., multitemporal, multisensoral and multipolarized) and does not require any additional user input. Thus, the highly flexible approach is interesting in terms of operational monitoring systems and large scale applications.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 5 )