By Topic

Real-Time Irradiance Simulation for PV Products and Building Integrated PV in a Virtual Reality Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Veldhuis, A. J. ; Department of Design, Production and Management, Faculty of Engineering Technology, University of Twente, Enschede , The Netherlands ; Reinders, A. H. M. E.

This paper describes a new software tool named “VR4PV,” which has been developed for real-time simulation of irradiance for photovoltaic (PV) products in a virtual 3-D environment. This tool offers the possibility for product designers and architects to evaluate the distribution of irradiance on surfaces with an arbitrary geometry that can be covered with PV cells. In addition, the energetic performance can be estimated during the design process of PV products and building integrated PV (BIPV). The software allows for irradiance calculations on multiple arbitrarily oriented surfaces at the same time. It includes shadow simulation for multiple surrounding objects with various shapes and can handle movements of the 3-D objects during the simulation, which might be useful for the design of moving PV-powered products like boats, cars, and portable handhelds. A validation is carried out based on 1-min outdoor measurements of irradiance on two different locations in Italy and in California.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 3 )