By Topic

An Evolutionary Algorithm Approach for Feature Generation from Sequence Data and Its Application to DNA Splice Site Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kamath, U. ; Dept. of Comput. Sci., George Mason Univ., Ashburn, VA, USA ; Compton, J. ; Islamaj-Dogan, R. ; De Jong, K.A.
more authors

Associating functional information with biological sequences remains a challenge for machine learning methods. The performance of these methods often depends on deriving predictive features from the sequences sought to be classified. Feature generation is a difficult problem, as the connection between the sequence features and the sought property is not known a priori. It is often the task of domain experts or exhaustive feature enumeration techniques to generate a few features whose predictive power is then tested in the context of classification. This paper proposes an evolutionary algorithm to effectively explore a large feature space and generate predictive features from sequence data. The effectiveness of the algorithm is demonstrated on an important component of the gene-finding problem, DNA splice site prediction. This application is chosen due to the complexity of the features needed to obtain high classification accuracy and precision. Our results test the effectiveness of the obtained features in the context of classification by Support Vector Machines and show significant improvement in accuracy and precision over state-of-the-art approaches.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )