By Topic

Replacing Two-Dimensional Binary Phase Matrix by a Pair of One-Dimensional Dynamic Phase Matrices for Laser Speckle Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenhong Gao ; School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing, P. R. China ; Zhaomin Tong ; Vladimir Kartashov ; Muhammad Nadeem Akram
more authors

In this paper, a method is proposed to create a pair of one dimensional binary phase modulator matrices 1D-BPMs, which is mathematically equivalent to a single two-dimensional binary phase modulator matrix 2D-BPM based on Sylvester constructed Hadamard matrices. An advantage of 1D-BPM over 2D-BPM is that the number of drive electrodes can be reduced from N2 to 2N for a N×N Hadamard phase matrix, thus simplifying the drive interconnects and drive electronics. 1D-BPM can be based on electro-optical material and hence can be driven electrically, which is an advantage over the 2D-BPM which is usually etched on a glass substrate and actuated mechanically to implement the speckle reduction in laser projectors. We have discussed the algorithm for constructing the pair of dynamic 1D-BPMs to replace the 2D-BPM. Preliminary experiments are performed to demonstrate the validity of our concept.

Published in:

Journal of Display Technology  (Volume:8 ,  Issue: 5 )