By Topic

Effect of Thermal Stresses on Carrier Mobility and Keep-Out Zone Around Through-Silicon Vias for 3-D Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Suk-Kyu Ryu ; Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin , Austin, TX, USA ; Kuan-Hsun Lu ; Tengfei Jiang ; Jang-Hi Im
more authors

Three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to overcome the wiring limit imposed on device density and performance. However, thermal stresses induced in the TSV structures can affect the device performance by degrading carrier mobility and raise serious reliability concerns. In this paper, the effect of thermal stresses in TSV structures on carrier mobility and keep-out zone (KOZ) was investigated by focusing on the characteristics of the stresses near the surface where the electronic devices are located. The near-surface stresses were characterized by finite element analysis, and the stress effect on carrier mobility was evaluated by considering the piezoresistivity effect near the Si surface. In this paper, the elastic anisotropy of Si was taken into account to evaluate the effect on carrier mobility for both n- and p-channel MOSFET devices aligned along the [100] and [110] directions. The results showed a significant stress effect on carrier mobility, particularly for n-type Si with [100] device alignment and p-type Si with [110] device alignment. Based on these results, the dimension of the KOZ was estimated based on a criterion of 5% change in the carrier mobility. Finally, the effects due to stress interactions in a TSV array and plasticity in Cu vias on the KOZ were investigated. The effect of stress interaction was found to depend on the ratio of the pitch to diameter of the TSV array. When this ratio is less than 5, the stress interaction can increase the size of the KOZ. In contrast, the via material plasticity was found to be useful in reducing the stress level and hence the size of the KOZ.

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:12 ,  Issue: 2 )