By Topic

Optically linearized modulators: chirp control for low-distortion analog transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jackson, M.K. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Smith, V.M. ; Hallam, W.J. ; Maycock, J.C.

We show that an increase of composite-second-order (CSO) distortion with increasing fiber length can occur in analog transmission systems using optically linearized Mach-Zehnder modulators and that the degradation is due to generation of chirp in the modulator. We extend a first-principles model to calculate the modulator chirp parameter and show that system CSO calculations using this model are in excellent agreement with measured results. Finally we propose and demonstrate a novel modulator design where chirp is greatly reduced while preserving excellent linearity. For an 80-channel North American frequency plan an optimized low-chirp modulator is predicted to extend the CSO-limited range of the system over standard single-mode fiber from approximately 50 km to greater than 300 km

Published in:

Lightwave Technology, Journal of  (Volume:15 ,  Issue: 8 )