By Topic

Development of a Pressure Control System for Brace Treatment of Scoliosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chalmers, E. ; Electr. & Comput. Eng. Dept., Univ. of Alberta, Edmonton, AB, Canada ; Lou, E. ; Hill, D. ; Zhao, V.H.
more authors

Bracing is a common nonsurgical treatment for scoliosis, but its effectiveness has been debated. Some clinical studies have shown efficacy of brace treatment is correlated to how the brace has been worn. The more often the patients wear their braces to the prescribed tightness as well as the prescribed length of wear each day, the better the treatment outcome. A system of four wireless pressure control devices was developed to understand brace wear-time and regulate a target pressure range at the brace-body interface. Each pressure control device could function independently and be embedded in the brace at key pressure areas. Such a system could improve the quality of brace wear-making the treatment more effective and refining our understanding of the three-pressure-point brace treatment concept during daily activities. This paper reports the system development and validation. The system was tested on four healthy subjects for 2 h without pressure regulation and 2 h with regulation. The results show that the pressure regulation doubled the time spent in a desired pressure range on average (from 31% to 62%). Brace-wear time was logged correctly. The system was also validated through a seven-day continuous test, and a fully charged battery could run for 30 days without requiring recharge.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 4 )