Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Cycling Induced by Electrical Stimulation Improves Muscle Activation and Symmetry During Pedaling in Hemiparetic Patients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Ambrosini, E. ; Bioeng. Dept., Politec. di Milano, Milano, Italy ; Ferrante, S. ; Ferrigno, G. ; Molteni, F.
more authors

A randomized controlled trial, involving 35 post-acute hemiparetic patients, demonstrated that a four-week treatment of cycling induced by functional electrical stimulation (FES-cycling) promotes motor recovery. Analyzing additional data acquired during that study, the present work investigated whether these improvements were associated to changes in muscle strength and motor coordination. Participants were randomized to receive FES-cycling or placebo FES-cycling. Clinical outcome measures were: the Motricity Index (MI), the gait speed, the electromyography activation of the rectus femoris and biceps femoris, and the mechanical work produced by each leg during voluntary pedaling. To provide a comparison with normal values, healthy adults also carried out the pedaling test. Patients were evaluated before, after training, and at follow-up visits. A significant treatment effect in favor of FES-treated patients was found in terms of MI scores and unbalance in mechanical works, while differences in gait speed were not significant (ANCOVA). Significant improvements in the activation of the paretic muscles were highlighted in the FES group, while no significant change was found in the placebo group (Friedman test). Our findings suggested that improvements in motor functions induced by FES-cycling training were associated with a more symmetrical involvement of the two legs and an improved motor coordination.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 3 )