By Topic

Safety Benefits of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-End Collisions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kusano, K.D. ; Virginia Polytech. Inst. & State Univ. (Virginia Tech), Blacksburg, VA, USA ; Gabler, H.C.

This paper examines the potential effectiveness of the following three precollision system (PCS) algorithms: 1) forward collision warning only; 2) forward collision warning and precrash brake assist; and 3) forward collision warning, precrash brake assist, and autonomous precrash brake. Real-world rear-end crashes were extracted from a nationally representative sample of collisions in the United States. A sample of 1396 collisions, corresponding to 1.1 million crashes, were computationally simulated as if they occurred, with the driver operating a precollision-system-equipped vehicle. A probability-based framework was developed to account for the variable driver reaction to the warning system. As more components were added to the algorithms, greater benefits were realized. The results indicate that the exemplar PCS investigated in this paper could reduce the severity (i.e., ΔV) of the collision between 14% and 34%. The number of moderately to fatally injured drivers who wore their seat belts could have been reduced by 29% to 50%. These collision-mitigating algorithms could have prevented 3.2% to 7.7% of rear-end collisions. This paper shows the dramatic reductions in serious and fatal injuries that a PCS, which is one of the first intelligent vehicle technologies to be deployed in production cars, can bring to highway safety when available throughout the fleet. This paper also presents the framework of an innovative safety benefits methodology that, when adapted to other emerging active safety technologies, can be employed to estimate potential reductions in the frequency and severity of highway crashes.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )