Cart (Loading....) | Create Account
Close category search window
 

Random Walks and Green's Function on Digraphs: A Framework for Estimating Wireless Transmission Costs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanhua Li ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Zhi-Li Zhang

Various applications in wireless networks, such as routing and query processing, can be formulated as random walks on graphs. Many results have been obtained for such applications by utilizing the theory of random walks (or spectral graph theory), which is mostly developed for undirected graphs. However, this formalism neglects the fact that the underlying (wireless) networks in practice contain asymmetric links, which are best characterized by directed graphs (digraphs). Therefore, random walk on digraphs is a more appropriate model to consider for such networks. In this paper, by generalizing the random walk theory (or spectral graph theory) that has been primarily developed for undirected graphs to digraphs, we show how various transmission costs in wireless networks can be formulated in terms of hitting times and cover times of random walks on digraphs. Using these results, we develop a unified theoretical framework for estimating various transmission costs in wireless networks. Our framework can be applied to random walk query processing strategy and the three routing paradigms-best path routing, opportunistic routing, and stateless routing-to which nearly all existing routing protocols belong. Extensive simulations demonstrate that the proposed digraph-based analytical model can achieve more accurate transmission cost estimation over existing methods.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.