By Topic

Simulation Tool for Equivalent Circuit Modeling of Photovoltaic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eidelloth, S. ; Inst. for Solar Energy Res. Hamelin, Emmerthal, Germany ; Haase, F. ; Brendel, R.

We describe an open-source simulation tool for the modeling of photovoltaic devices with equivalent circuit networks. Our SpiceGUI interconnects devices with known current voltage characteristics and calculates the current density-voltage curve of the combined device. The SpiceGUI is written as hybrid Octave/MATLAB code and has a flexible graphical user interface. It supports batch simulations with the SPICE tools LTspice, NGspice, and SMARTspice. The available postprocessing functions include convenient batch parameter plots and power loss analysis diagrams. We present two simulation examples. The first example simulates a solar cell with front contact fingers. It assists the reader in understanding the SpiceGUI unit tree and serves as starting point for the development of custom models. This first example also shows that the SpiceGUI yields reliable results, even for very demanding models that exceed 4 GB working memory. The second example models back-contacted thin-film silicon solar cells. We use measured Jsc-Voc curves as input data for the current sources of the network. Additional resistive elements complete the network. The simulated JV curves of the combined device agree well with the measured JV curves. The distributed nature of the resistances is essential to describing the shape of the measured JV curves.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 4 )