By Topic

Transferring Visual Prior for Online Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qing Wang ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Feng Chen ; Jimei Yang ; Wenli Xu
more authors

Visual prior from generic real-world images can be learned and transferred for representing objects in a scene. Motivated by this, we propose an algorithm that transfers visual prior learned offline for online object tracking. From a collection of real-world images, we learn an overcomplete dictionary to represent visual prior. The prior knowledge of objects is generic, and the training image set does not necessarily contain any observation of the target object. During the tracking process, the learned visual prior is transferred to construct an object representation by sparse coding and multiscale max pooling. With this representation, a linear classifier is learned online to distinguish the target from the background and to account for the target and background appearance variations over time. Tracking is then carried out within a Bayesian inference framework, in which the learned classifier is used to construct the observation model and a particle filter is used to estimate the tracking result sequentially. Experiments on a variety of challenging sequences with comparisons to several state-of-the-art methods demonstrate that more robust object tracking can be achieved by transferring visual prior.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 7 )