Cart (Loading....) | Create Account
Close category search window
 

Noniterative Filter-Based Maximum Likelihood Estimators for GNSS Signal Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jong-Hoon Won ; Univ. Fed. Armed Forces, Germany ; Pany, T. ; Eissfeller, B.

This paper presents alternate forms of a signal tracking algorithm for Global Navigation Satellite System (GNSS) receivers that use a maximum likelihood estimation (MLE) technique. The cost function of the MLE for estimating signal parameters such as code delay, carrier phase, and Doppler frequency is used to derive discriminator functions to create error signals from incoming and reference signals. Assuming a code-free signal and an additive white Gaussian noise, we derive an efficient, practical form of general purpose signal tracking algorithms by using a noniterative MLE approach for arbitrary spreading codes and modulation schemes in accordance with computational efficiency. Two versions of an MLE algorithm are derived. The first is a coherent MLE algorithm derived from the gradient of the log-likelihood cost function for signal parameters. The second is a noncoherent MLE algorithm derived on the basis of complex domain signal that is insensitive to carrier phase error and data bits, thereby eliminating the coupling effect between the carrier phase and Doppler frequency. Analytical test results demonstrate the performance of the proposed algorithms in comparison with those from conventional approaches in terms of pull-in-range, coupling effect, and computational efficiency.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:48 ,  Issue: 2 )

Date of Publication:

APRIL 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.