Cart (Loading....) | Create Account
Close category search window
 

Simulation, learning, and optimization techniques in Watson's game strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tesauro, G. ; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Gondek, D.C. ; Lenchner, J. ; Fan, J.
more authors

The game of Jeopardy!™ features four types of strategic decision-making: 1) Daily Double wagering; 2) Final Jeopardy! wagering; 3) selecting the next square when in control of the board; and 4) deciding whether to attempt to answer, i.e., buzz in. Strategies that properly account for the game state and future event probabilities can yield a huge boost in overall winning chances, when compared with simple rule-of-thumb strategies. In this paper, we present an approach to developing and testing components to make said strategy decisions, founded upon development of reasonably faithful simulation models of the players and the Jeopardy! game environment. We describe machine learning and Monte Carlo methods used in simulations to optimize the respective strategy algorithms. Application of these methods yielded superhuman game strategies for IBM Watson™ that significantly enhanced its overall competitive record.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:56 ,  Issue: 3.4 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.