By Topic

Structured data and inference in DeepQA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
A. Kalyanpur ; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; B. K. Boguraev ; S. Patwardhan ; J. W. Murdock
more authors

Although the majority of evidence analysis in DeepQA is focused on unstructured information (e.g., natural-language documents), several components in the DeepQA system use structured data (e.g., databases, knowledge bases, and ontologies) to generate potential candidate answers or find additional evidence. Structured data analytics are a natural complement to unstructured methods in that they typically cover a narrower range of questions but are more precise within that range. Moreover, structured data that has formal semantics is amenable to logical reasoning techniques that can be used to provide implicit evidence. The DeepQA system does not contain a single monolithic structured data module; instead, it allows for different components to use and integrate structured and semistructured data, with varying degrees of expressivity and formal specificity. This paper is a survey of DeepQA components that use structured data. Areas in which evidence from structured sources has the most impact include typing of answers, application of geospatial and temporal constraints, and the use of formally encoded a priori knowledge of commonly appearing entity types such as countries and U.S. presidents. We present details of appropriate components and demonstrate their end-to-end impact on the IBM Watson™ system.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:56 ,  Issue: 3.4 )