By Topic

Textual resource acquisition and engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chu-Carroll, J. ; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Fan, J. ; Schlaefer, N. ; Zadrozny, W.

A key requirement for high-performing question-answering (QA) systems is access to high-quality reference corpora from which answers to questions can be hypothesized and evaluated. However, the topic of source acquisition and engineering has received very little attention so far. This is because most existing systems were developed under organized evaluation efforts that included reference corpora as part of the task specification. The task of answering Jeopardy!™ questions, on the other hand, does not come with such a well-circumscribed set of relevant resources. Therefore, it became part of the IBM Watson™ effort to develop a set of well-defined procedures to acquire high-quality resources that can effectively support a high-performing QA system. To this end, we developed three procedures, i.e., source acquisition, source transformation, and source expansion. Source acquisition is an iterative development process of acquiring new collections to cover salient topics deemed to be gaps in existing resources based on principled error analysis. Source transformation refers to the process in which information is extracted from existing sources, either as a whole or in part, and is represented in a form that the system can most easily use. Finally, source expansion attempts to increase the coverage in the content of each known topic by adding new information as well as lexical and syntactic variations of existing information extracted from external large collections. In this paper, we discuss the methodology that we developed for IBM Watson for performing acquisition, transformation, and expansion of textual resources. We demonstrate the effectiveness of each technique through its impact on candidate recall and on end-to-end QA performance.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:56 ,  Issue: 3.4 )