By Topic

Multirobot Coordination With Periodic Connectivity: Theory and Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geoffrey A. Hollinger ; Computer Science Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA ; Sanjiv Singh

We examine the scenario in which a mobile network of robots must search, survey, or cover an environment and communication is restricted by relative location. While many algorithms choose to maintain a connected network at all times while performing such tasks, we relax this requirement and examine the use of periodic connectivity, where the network must regain connectivity at a fixed interval. We propose an online algorithm that scales linearly in the number of robots and allows for arbitrary periodic connectivity constraints. To complement the proposed algorithm, we provide theoretical inapproximability results for connectivity-constrained planning. Finally, we validate our approach in the coordinated search domain in simulation and in real-world experiments.

Published in:

IEEE Transactions on Robotics  (Volume:28 ,  Issue: 4 )