By Topic

Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Efthymios Manitsas ; Department of Electrical and Electronic Engineering, Imperial College London, London, UK ; Ravindra Singh ; Bikash C. Pal ; Goran Strbac

This paper presents an alternative approach to pseudo measurement modeling in the context of distribution system state estimation (DSSE). In the proposed approach, pseudo measurements are generated from a few real measurements using artificial neural networks (ANNs) in conjunction with typical load profiles. The error associated with the generated pseudo measurements is made suitable for use in the weighted least squares (WLS) state estimation by decomposition into several components through the Gaussian mixture model (GMM). The effect of ANN-based pseudo measurement modeling on the quality of state estimation is demonstrated on a 95-bus section of the U.K. generic distribution system (UKGDS) model.

Published in:

IEEE Transactions on Power Systems  (Volume:27 ,  Issue: 4 )