By Topic

Target detection for very high-frequency synthetic aperture radar ground surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. Ye ; University of Florida, Gainesville, FL 32611, USA ; C. Paulson ; D. Wu

A target detection algorithm is developed based on a supervised learning technique that maximises the margin between two classes, that is, the target class and the non-target class. Specifically, the proposed target detection algorithm consists of (i) image differencing, (ii) maximum-margin classifier, and (iii) diversity combining. The image differencing is to enhance and highlight the targets so that the targets are more distinguishable from the background. The maximum-margin classifier is based on a recently developed feature weighting technique called Iterative RELIEF; the objective of the maximum-margin classifier is to achieve robustness against uncertainties and clutter. The diversity combining utilises multiple images to further improve the performance of detection, and hence it is a type of multi-pass change detection. The authors evaluate the performance of the proposed detection algorithm, using the CARABAS-II synthetic aperture radar (SAR) image data and the experimental results demonstrate superior performance of the proposed algorithm, compared to the benchmark algorithm.

Published in:

IET Computer Vision  (Volume:6 ,  Issue: 2 )