By Topic

Petri Net Modeling and Cycle-Time Analysis of Dual-Arm Cluster Tools With Wafer Revisiting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
NaiQi Wu ; Department of Industrial Engineering, School of Mechatronics Engineering, Guangdong University of Technology, Guangzhou, China ; Feng Chu ; Chengbin Chu ; MengChu Zhou

There are wafer fabrication processes in cluster tools that require wafer revisiting. If a swap strategy is applied to dual-arm cluster tools handling wafer revisiting, a three-wafer periodical process is formed with three wafers completed in each period. Such a period contains three cycles in a revisiting process and three cycles in a nonrevisiting one. Hence, analysis and scheduling of such tools become very complicated. In this paper, a Petri net (PN) model is developed to describe their operations. Based on it, it is found that, if a swap strategy is applied, such tools are always in a transient state. A systematic method is then presented to analyze their performance. With the help of the proposed PN model, this work, for the first time, derives the optimality conditions of three-wafer period scheduling. Industrial application examples are given to show the results.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics: Systems  (Volume:43 ,  Issue: 1 )