By Topic

The Little Engine(s) That Could: Scaling Online Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pujol, J.M. ; Internet Scientific Group, Telefonica Research, Barcelona, Spain ; Erramilli, V. ; Siganos, Georgos ; Yang, X.
more authors

The difficulty of partitioning social graphs has introduced new system design challenges for scaling of online social networks (OSNs). Vertical scaling by resorting to full replication can be a costly proposition. Scaling horizontally by partitioning and distributing data among multiple servers using, for e.g., distributed hash tables (DHTs), can suffer from expensive interserver communication. Such challenges have often caused costly rearchitecting efforts for popular OSNs like Twitter and Facebook. We design, implement, and evaluate SPAR, a Social Partitioning and Replication middleware that mediates transparently between the application and the database layer of an OSN. SPAR leverages the underlying social graph structure in order to minimize the required replication overhead for ensuring that users have their neighbors' data colocated in the same machine. The gains from this are multifold: Application developers can assume local semantics, i.e., develop as they would for a single machine; scalability is achieved by adding commodity machines with low memory and network I/O requirements; and N+K redundancy is achieved at a fraction of the cost. We provide a complete system design, extensive evaluation based on datasets from Twitter, Orkut, and Facebook, and a working implementation. We show that SPAR incurs minimum overhead, can help a well-known Twitter clone reach Twitter's scale without changing a line of its application logic, and achieves higher throughput than Cassandra, a popular key-value store database.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 4 )