By Topic

Robust Reversible Watermarking via Clustering and Enhanced Pixel-Wise Masking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lingling An ; School of Electronic Engineering, Xidian University, Xi'an, China ; Xinbo Gao ; Xuelong Li ; Dacheng Tao
more authors

Robust reversible watermarking (RRW) methods are popular in multimedia for protecting copyright, while preserving intactness of host images and providing robustness against unintentional attacks. However, conventional RRW methods are not readily applicable in practice. That is mainly because: 1) they fail to offer satisfactory reversibility on large-scale image datasets; 2) they have limited robustness in extracting watermarks from the watermarked images destroyed by different unintentional attacks; and 3) some of them suffer from extremely poor invisibility for watermarked images. Therefore, it is necessary to have a framework to address these three problems, and further improve its performance. This paper presents a novel pragmatic framework, wavelet-domain statistical quantity histogram shifting and clustering (WSQH-SC). Compared with conventional methods, WSQH-SC ingeniously constructs new watermark embedding and extraction procedures by histogram shifting and clustering, which are important for improving robustness and reducing run-time complexity. Additionally, WSQH-SC includes the property-inspired pixel adjustment to effectively handle overflow and underflow of pixels. This results in satisfactory reversibility and invisibility. Furthermore, to increase its practical applicability, WSQH-SC designs an enhanced pixel-wise masking to balance robustness and invisibility. We perform extensive experiments over natural, medical, and synthetic aperture radar images to show the effectiveness of WSQH-SC by comparing with the histogram rotation-based and histogram distribution constrained methods.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 8 )