By Topic

Improved Nonlocal Means Based on Pre-Classification and Invariant Block Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruomei Yan ; Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK ; Ling Shao ; Cvetkovic, S.D. ; Klijn, J.

One of the most popular image denoising methods based on self-similarity is called nonlocal means (NLM). Though it can achieve remarkable performance, this method has a few shortcomings, e.g., the computationally expensive calculation of the similarity measure, and the lack of reliable candidates for some nonrepetitive patches. In this paper, we propose to improve NLM by integrating Gaussian blur, clustering, and rotationally invariant block matching (RIBM) into the NLM framework. Experimental results show that the proposed technique can perform denoising better than the original NLM both quantitatively and visually, especially when the noise level is high.

Published in:

Display Technology, Journal of  (Volume:8 ,  Issue: 4 )