By Topic

Online Learning in BitTorrent Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Izhak-Ratzin, R. ; Palo Alto Networks, Sunnyvale, CA, USA ; Hyunggon Park ; van der Schaar, M.

We propose a BitTorrent-like protocol based on an online learning (reinforcement learning) mechanism, which can replace the peer selection mechanisms in the regular BitTorrent protocol. We model the peers' interactions in the BitTorrent-like network as a repeated stochastic game, where the strategic behaviors of the peers are explicitly considered. A peer that applies the reinforcement learning (RL)-based mechanism uses the observations on the associated peers' statistical reciprocal behaviors to determine its best responses and estimate the corresponding impact on its expected utility. The policy determines the peer's resource reciprocations such that the peer can maximize its long-term performance. We have implemented the proposed mechanism and incorporated it into an existing BitTorrent client. Our experiments performed on a controlled Planetlab testbed confirm that the proposed protocol 1) promotes fairness and provides incentives to contributed resources, i.e., high capacity peers improve their download completion time by up to 33 percent, 2) improves the system stability and robustness, i.e., reduces the peer selection fluctuations by 57 percent, and (3) discourages free-riding, i.e., peers reduce their uploads to free-riders by 64 percent as compared to the regular BitTorrent protocol.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 12 )