By Topic

Interactive Distributed Generation Interface for Flexible Micro-Grid Operation in Smart Distribution Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alireza Kahrobaeian ; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada ; Yasser Abdel-Rady I. Mohamed

This paper presents an interactive distributed generation (DG) interface for flexible micro-grid operation in the smart distribution system environment. Under the smart grid environment, DG units should be included in the system operational control framework, where they can be used to enhance system reliability by providing backup generation in isolated mode, and to provide ancillary services (e.g. voltage support and reactive power control) in the grid-connected mode. To meet these requirements, the proposed flexible interface utilizes a fixed power-voltage-current cascaded control structure to minimize control function switching and is equipped with robust internal model control structure to maximize the disturbance rejection performance within the DG interface. The proposed control system facilitates flexible and robust DG operational characteristics such as 1) active/reactive power (PQ) or active power/voltage (PV) bus operation in the grid-connected mode, 2) regulated power control in autonomous micro-grid mode, 3) smooth transition between autonomous mode and PV or PQ grid connected modes and vice versa, 4) reduced voltage distortion under heavily nonlinear loading conditions, and 5) robust control performance under islanding detection delays. Evaluation results are presented to demonstrate the flexibility and effectiveness of the proposed controller.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:3 ,  Issue: 2 )