By Topic

A Nine-Phase Permanent-Magnet Motor Drive System for an Ultrahigh-Speed Elevator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jung, Eunsoo ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea ; Hyunjae Yoo ; Seung-Ki Sul ; Hong-Soon Choi
more authors

This paper presents a nine-phase permanent-magnet synchronous motor (PMSM) drive system based on multiple three-phase voltage source inverters. The nine-phase PMSM was developed as a traction motor for an ultrahigh-speed elevator. The mathematical model of the motor was simplified through symmetry of the system. Using the simplified model, the drive system can be controlled by the well-known d-q control theory. The feasibility and validity of the drive system were experimentally demonstrated at the world's tallest elevator test tower. Moreover, an additional experiment was performed to ensure the fault-tolerance capability of the system.

Published in:

Industry Applications, IEEE Transactions on  (Volume:48 ,  Issue: 3 )