By Topic

An ultra-compliant, scalable neural probe with molded biodissolvable delivery vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
P. J. Gilgunn ; Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ; R. Khilwani ; T. D. Y. Kozai ; D. J. Weber
more authors

This paper describes an ultra-compliant parylene-platinum neural probe embedded in a biodissolvable delivery vehicle. High probe compliance is achieved using thin wires (width of 10.0 μm and thickness of 2.7 μm) and by meandering the probe. The insertion of the ultra-compliant probe is achieved by encasing it in a dissolvable delivery vehicle made from molded carboxy-methylcellulose. In vivo implantations of delivery vehicles with 1.5 mm long shanks, widths of 100 μm and 300 μm and a targeted thickness of 135 μm have been done through the dura in the cortex of Sprague-Dawley rats at a speed of 80 mm-s-1. The delivery vehicle becomes a gel over a period of less than three minutes, after which the handling portions of the delivery vehicle are removed leaving the shanks embedded in the brain.

Published in:

Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on

Date of Conference:

Jan. 29 2012-Feb. 2 2012