By Topic

Micromachined sapphire GHz lateral overtone bulk acoustic resonators transduced by aluminum nitride

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Nai-Kuei Kuo ; Univ. of Pennsylvania, Philadelphia, PA, USA ; Songbin Gong ; Hartman, J. ; Kelliher, J.
more authors

This paper introduces a new class of piezoelectric-transduced bulk acoustic wave resonators formed by a micro-machined c-plane sapphire (Al2O3) membrane (~750 nm). The thin film sapphire (TFS) is fully suspended in air and made to vibrate in the GHz range by a sputtered aluminum nitride (AlN) film. For the first time, the realization of the TFS is achieved via a layer transfer process from a single crystal c-plane sapphire wafer. In order to demonstrate the superior intrinsic material quality of the sapphire membrane, a lateral overtone bulk acoustic resonator (LOBAR) configuration, recently introduced by our group, was employed. The LOBAR is engineered to minimize the effects of mechanical energy dissipation and extract the ultimate limit set by phonon-phonon dissipation in the TFS. In addition to the conventional rectangular design, an annular LOBAR geometry is introduced in this paper. This design permits to lower the device impedance (~3k Ω), while attaining a high quality factor (Q). The measured responses exhibit f·Q of 4.1·1012 Hz and 4.6·1012 Hz at 1 and 2 GHz, respectively in the annular configuration with a 9% of transducer to sapphire coverage ratio. The conventional rectangular LOBAR with coverage ratio of 0.57% exhibits a Q of 5,440 at 2.8 GHz, which translates to the highest f·Q (1.53·1013 Hz) ever reported for AlN-based suspended resonators.

Published in:

Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on

Date of Conference:

Jan. 29 2012-Feb. 2 2012