By Topic

A 2.6 mW/Gbps 12.5 Gbps RX With 8-Tap Switched-Capacitor DFE in 32 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Thomas Toifl ; Zurich Research Laboratory, IBM Research – Zurich, Rüschlikon, Switzerland ; Christian Menolfi ; Michael Ruegg ; Robert Reutemann
more authors

A low-power receiver circuit in 32 nm SOI CMOS is presented, which is intended to be used in a source-synchronous link configuration. The design of the receiver was optimized for power owing to the assumption that a link protocol enables a periodic calibration during which the circuit does not have to deliver valid data. In addition, it is shown that the transceiver power and the effect of high-frequency transmit jitter can be reduced by implementing a linear equalizer only on the receive side and avoiding a transmit feed-forward equalizer (TX-FFE). On the circuit level, the receiver uses a switched-capacitor (SC) approach for the implementation of an 8-tap decision-feedback equalizer (DFE). The SC-DFE improves the timing margin relative to previous DFE implementations with current feedback, and leads to a digital-style circuit implementation with compact layout. The receiver was measured at data rates up to 13.5 Gb/s, where error free operation was verified with a PRBS-31 sequence and a channel with 32 dB attenuation at Nyquist. With the clock generation circuits amortized over eight lanes, the receiver circuit consumes 2.6 mW/Gbps from a 1.1 V supply while running at 12.5 Gb/s.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 4 )