Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Shape, texture and local movement hand gesture features for Indian Sign Language recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rekha, J. ; Surface Robot. Lab., Central Mech. Eng. Res. Inst. (CMERI), Durgapur, India ; Bhattacharya, J. ; Majumder, S.

This paper proposes an automatic gesture recognition approach for Indian Sign Language (ISL). Indian sign language uses both hands to represent each alphabet. We propose an approach which addresses local-global ambiguity identification, inter-class variability enhancement for each hand gesture. Hand region is segmented and detected by YCbCr skin color model reference. The shape, texture and finger features of each hand are extracted using Principle Curvature Based Region (PCBR) detector, Wavelet Packet Decomposition (WPD-2) and complexity defects algorithms respectively for hand posture recognition process. To classify each hand posture, multi class non linear support vector machines (SVM) is used, for which a recognition rate of 91.3% is achieved. Dynamic gestures are classified using Dynamic Time Warping (DTW) with the trajectory feature vector with 86.3% recognition rate. The performance of the proposed approach is analyzed with well known classifiers like SVM, KNN & DTW. Experimental results are compared with the conventional and existing algorithms to prove the better efficiency of the proposed approach.

Published in:

Trendz in Information Sciences and Computing (TISC), 2011 3rd International Conference on

Date of Conference:

8-9 Dec. 2011