By Topic

Robust Take-Off for a Quadrotor Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. Cabecinhas ; Lab. of Robot. & Syst. in Eng. & Sci. (LARSyS), Univ. Tec. de Lisboa, Lisbon, Portugal ; R. Naldi ; L. Marconi ; C. Silvestre
more authors

This paper addresses the problem of robust take-off of a quadrotor unmanned aerial vehicle (UAV) in critical scenarios, such as in the presence of sloped terrains and surrounding obstacles. Throughout the maneuver, the vehicle is modeled as a hybrid automaton whose states reflect the different dynamic behaviors exhibited by the UAV. The original take-off problem is then addressed as the problem of tracking suitable reference signals in order to achieve the desired transitions between different hybrid states of the automaton. Reference trajectories and feedback control laws are derived to explicitly account for uncertainties in both the environment and the vehicle dynamics. Simulation results demonstrate the effectiveness of the proposed solution and highlight the advantages with respect to more standard open-loop strategies, especially for cases in which the slope of the terrain renders the take-off maneuver more critical to achieve.

Published in:

IEEE Transactions on Robotics  (Volume:28 ,  Issue: 3 )