Cart (Loading....) | Create Account
Close category search window
 

Medium Access Control Protocols for Wireless Sensor Networks with Energy Harvesting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Iannello, F. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Simeone, O. ; Spagnolini, U.

The design of Medium Access Control (MAC) protocols for wireless sensor networks (WSNs) has been conventionally tackled by assuming battery-powered devices and by adopting the network lifetime as the main performance criterion. While WSNs operated by energy-harvesting (EH) devices are not limited by network lifetime, they pose new design challenges due to the uncertain amount of energy that can be harvested from the environment. Novel design criteria are thus required to capture the trade-offs between the potentially infinite network lifetime and the uncertain energy availability. This paper addresses the analysis and design of WSNs with EH devices by focusing on conventional MAC protocols, namely TDMA, framed-ALOHA (FA) and dynamic-FA (DFA), and by accounting for the performance trade-offs and design issues arising due to EH. A novel metric, referred to as delivery probability, is introduced to measure the capability of a MAC protocol to deliver the measurement of any sensor in the network to the intended destination (or fusion center, FC). The interplay between delivery efficiency and time efficiency (i.e., the data collection rate at the FC), is investigated analytically using Markov models. Numerical results validate the analysis and emphasize the critical importance of accounting for both delivery probability and time efficiency in the design of EH-WSNs.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.